• 3.9 Hours

  • 4.7/5

  • Advanced

Course curriculum

  • 1
    Introduction to RAG systems
    • Why RAG
    • What is RAG system
    • Overview of RAG Framework
    • Quiz
    • Course handouts (Updated on 2024-12-06)
  • 2
    Getting Started with LlamaIndex
    • Introduction to LlamaIndex
    • Components of LlamaIndex
    • Reading Material: How to get your API Key
    • How to get Open AI Keys - 2 min - Website go through
    • Build Your First RAG system using LlamaIndex
    • Quiz
  • 3
    Components of LlamaIndex
    • Data Loaders
    • Data Loaders Implementation
    • Chunking - Tokenization
    • Chunking _ Tokenization Implementation
    • Node Parser
    • Node Parser Implementation part -1
    • Node Parser Implementation part- 2
    • Node Parser Implementation part- 3
    • Node Parser Implementation part- 4
    • Embeddings
    • Embeddings Implementation
    • Quiz
    • Indexing and Retrieval Part- 1
    • Indexing and Retrieval Part- 2
    • Indexing and Retrieval Implementation part- 1
    • Indexing and Retrieval Implementation part- 2
    • Vector Databases
    • Vector Databases Implementation
    • LLMs
    • LLMs Implementation
    • Response Synthesis
    • Response Synthesis Implementation
    • Query Engine
    • Query Engine Implementation
    • Quiz
  • 4
    Evaluation of RAG systems
    • Introduction to Evaluation Metrics
    • Hit Rate and MRR
    • Faithfulness
    • Relevancy
    • Correctness
    • Quiz
    • Evaluating RAG Systems - Part I
    • Evaluating RAG Systems - Part II
    • Evaluating different Indices
    • Assignment
  • 5
    Customization in LlamaIndex
    • Metadata Management
    • Metadata Extraction
    • Data ingestion Pipeline
    • Quiz
  • 6
    Advanced approaches for powerful RAG system
    • Finetuning Embeddings
    • Challenges with Naive RAG_system
    • Sentence window retriever
    • Hands on: Sentence window retriever
    • Auto Merging Retriever
    • Hands on: Auto Merging Retriever
    • Auto Retriever
    • Hands on: Auto Retriever
    • Recursive Retriever
    • Hands on: Recursive retriever
    • Hybrid Fusion Retriever
    • Hands on: Hybrid Fusion Retriever
    • Router Query Engine
    • Hands on: Router Query Engine
    • Sub Question Query Engine
    • Hands on: Sub Ques Query Engine
    • Multi Document Agent
    • Hands on: Multi document Agents
    • Quiz
    • Assignment

Instructor

Prashant Sahu, Ph.D IIT Bombay, Data Science Manager, Analytics Vidhya

A dynamic and innovative Data Scientist, brings extensive experience in AI, ML, and advanced analytics to the table.
Instructor